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Abstract. The statistics of many-particle energy levels of a finite two-dimensional system of
interacting electrons is studied numerically. It is shown that the statistics of these levels undergoes
a Poisson-to-Wigner crossover as the strength of the disorder is decreased. This crossover occurs at
a similar strength of disorder to the one-electron delocalization crossover in a finite two-dimensional
system and develops almost simultaneously at all energies. We interpret this crossover in terms of
delocalization in the space of occupation numbers of strongly bound and compact electron–hole
pairs (excitons).

1. Introduction

The statistics of the quantum energy spectra of a disordered system of noninteracting
electrons—for example, the Anderson model—was shown to be a good diagnostic tool for
studying an insulator–metal transition [1]. It was discovered that the crossover from a Poisson
distribution of the nearest-neighbour level spacings to a Wigner distribution sharpens with the
system size. Finite-size scaling then permits one to find out whether the transition exists and,
if it does, to calculate quite accurately the transition point and indices [1,2].

Recently, attention has started to shift in the direction of spectral statistics of the total
energy of a finite disordered system of interacting electrons [3–8]. Good examples of such
systems are quantum dots (here we are discussing the energies of the excited states of the dot
and not the charging spectrum). All previous work that we know of deals with metallic systems
which are well above the insulator–metal transition. For such systems a Poisson–Wigner (P–W)
crossover with growing energy or interaction strength was predicted [3–6,8].

Here we want to study the statistics of the many-particle levels in the localized regime by
means of exact diagonalization. Obvious sample size limitations prevent us from working with
three-dimensional samples. Therefore in this paper we concentrate on the two-dimensional
case where the very existence of a transition in an interacting system has been under debate
for a long time. We define the localized regime in this case as a range of disorder where the
localization length of the corresponding one-electron problem is smaller than the system size.
We find that in the localized regime, decreasing disorder modifiesP(s) in the direction of a
Wigner distribution. Unexpectedly, this crossover takes place almost uniformly at all energies
larger than the single-level spacing (the energies of the many-body excited states are calculated
from the many-body ground state).
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We interpret the excited states with high energies as consisting of several electron–hole
excitations. Each electron–hole pair is bound by Coulomb interaction. We call such excitations
excitons. At strong enough disorder, states are localized in the space of states with different
numbers of excitons, or, in other words, states of very close energies but with different numbers
of excitons do not mix coherently. As a result, the nearest-level distribution function of the
many-body states is Poissonian. With decreasing disorder, the rate of decay of an exciton
to smaller-energy excitons becomes of the order of the spacing between the many-particle
levels. The feature that this P–W crossover is almost independent of the energy and interaction
contrasts strongly with the case for metallic samples [3–6, 8]. This is so because the density
of states of the excitons and the exciton–exciton interactions are different from the ones for
weakly interacting electron–hole pairs in a metal.

2. The model

The numerical study is based on the following interacting many-particle tight-binding
Hamiltonian:

H =
∑
k,j

εk,j a
†
k,j ak,j − V

∑
k,j

(a
†
k,j+1ak,j + a†

k+1,j ak,j ) + h.c. +Hint (1)

whereεk,j is the energy of a site (k, j ), chosen randomly between−W/2 andW/2 with uniform
probability, andV is a constant hopping matrix element. The interaction Hamiltonian is given
by

Hint = U
∑

k,j>l,p

a
†
k,j ak,j a

†
l,pal,p

|Erk,j − Erl,p|/b (2)

whereU = e2/b, andb is the lattice unit.
We consider 3×3, 4×3, and 4×4 dots withm = 9, 12, 16 sites andn = 3, 4, 4 electrons.

TheM ×M (whereM = (
m

n
)) Hamiltonian matrix is numerically diagonalized, and all of

the eigenvectors|9j 〉 and eigenvaluesEj are obtained. The strengthU of the interaction is
varied between 0 and 30V , and the disorder strength is chosen to be betweenW = 5V and
W = 100V . Usually, results are averaged over 1000 realizations.

We will use the energy level statistics as an indication of the Anderson transition in Fock
space. A convenient way to characterize the change in the statistics of a system proposed in
reference [1] is to study the parameterγ defined as

γ =
(∫ ∞

2
P(s) ds − e−π

)/
(e−2 − e−π ) (3)

whereP(s) is the distribution of the normalized level spacingss = (Ej −Ej−1)/〈Ej −Ej−1〉,
where〈· · ·〉 denotes an average over different realizations of disorder. For an infinite system,
γ changes sharply fromγ = 1 for the localized regime toγ = 0 for the extended regime. For
a finite system the change is gradual.

3. Results and discussion

In figure 1 we show as an example the distribution of the level spacings close to the many-
particle band centre forU = 10V . A clear crossover from a Wigner-like behaviour to a Poisson
behaviour as function of disorder can be seen. In order to show this behaviour for different
excitation energies and interaction strengths, we present in figure 2 greyscale maps ofγ for
three different values ofW . The greyscale maps show the average value ofγ for the spacings
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Figure 1. The distributionP(s) as function of the disorderW for a 4×3 lattice with four electrons
at a given interaction strengthU = 10V .

between a many-particle state with energyE above the ground state and the many-particle
state above it. A general feature which appears with growing disorder strength is apparent—
the statistics for energiesE > 21 (where1 is the single-electron-level spacing) becomes
rather uniform and does not depend strongly on interaction strength or excitation energy. This
feature becomes more pronounced as the disorder increases, and is in strong contrast to the
situation in the metallic regime, in which interesting features were seen as functions of the
interaction strength and excitation energy. Note thatW ∼ 15V corresponds to the point
where the localization length for the single-electron case is of the order of the system size
(ξ(W = 15) = 2.2b; see MacKinnon and Kramer [9]); therefore atW > 15V we are dealing
with the localized regime.

This behaviour clearly shows that at largeW the different high-energy many-particle states
can be close in energy but nevertheless can have a small repulsion; i.e., interactions do not
couple different many-particle states no matter what energy is available. We interpret this
behaviour as the result of the high-energy many-particle states being composed of several
electron–hole excitations (excitons). Neighbouring many-particle states are usually composed
of different numbers of excitons, and are related by a very-weak-interaction matrix element
connecting them no matter how strong the interactions are. Thus, no repulsion between the
states appears, and the statistics is essentially Poissonic for any interaction strength or energy.
The P–W crossover that occurs as the disorderW decreases is rather uniform and shows no
strong dependence on energy or interaction strength (as long as the region is still above the
transition, and the interaction strengthU > 2V ). We interpret this crossover as being a result
of the delocalization of the system in the space of states with different numbers of excitons,
which happens once the matrix element for the decay of a typical exciton into two smaller ones
becomes of the order of the spacing between many-particle levels.
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Figure 2. A greyscale map of the values ofγ as a function of the interaction strengthU in units
of V and the excitation energy in units of the single-electron-level spacing1 for a 4× 3 lattice
with four electrons. (a)W = 10V , (b)W = 20V , (c)W = 30V . The corresponding single-level
spacings are (a)1 = 0.899V , (b)1 = 1.595V , and (c)1 = 2.344V .
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Figure 2. (Continued)

The energy-independent P–W crossover revealed here differs drastically from the
predictions and calculations made for Fock space delocalization in metallic systems [3–8].
We relate this fact to the difference between the excitons of the insulating phase and the
weakly interacting electron–hole pairs of the metallic samples. Unlike the latter, an exciton
consists of an electron and a hole strongly bound to each other by the Coulomb interaction.
In the limit of largeW andU in the classical Coulomb glass, this exciton is just the classical
compact electron–hole pair excitation of reference [10]. Due to the existence of the Coulomb
gap, electron–hole excitations corresponding to the transfer of an electron over a small distance
(a compact pair) are known to have a constant density of states at small energies. On the other
hand, in a metallic dot the joint density of states of weakly interacting electron–hole pairs is
linear in energy. We expect such a difference to be preserved in the quantum system. To find
the P–W crossover, we have to use the density of states of excitons and the matrix elements
for an exciton decay. We have already mentioned that there is a drastic difference between
the exciton densities of states of metallic and insulating samples. The matrix elements of the
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exciton decay should be different from the matrix element of the emission of an electron–hole
pair by a free electron used in references [3–7] as well. Thus a drastic difference between the
P–W crossovers for metallic and insulating cases seems natural.
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Figure 3. The values ofγ as function of disorderW for a 3× 3 lattice with three electrons, a
4× 3 lattice with four electrons, and a 4× 4 lattice with four electrons, at interaction strength
U = 8V , and also for a 4× 3 lattice with four electrons forU = 12V andU = 16V . The full
lines correspond to the value ofγ averaged over the lowest 3% of the spacings in the many-particle
spectrum, and the dotted lines correspond toγ averaged over the lowest 10% of the spacings.

In figure 3 we present a more quantitative description of the P–W crossover. We show
the results forγ averaged over 3% and 10% of the low-lying many-particle energy levels for
intermediate values of the interaction (U = 8V, 12V, 16V ) and for different lattice sizes and
electron numbers. It is obvious that in all casesγ increases as the disorderW is enhanced.
This is a possible signature of the single-electron delocalization crossover in the many-particle
spectrum. There is no significant difference between the values ofγ for 3% and 10% of the
spectrum, nor is there a strong dependence on interaction strength, so the crossover does indeed
proceed rather uniformly in energy and interaction strength. As larger values of disorder are
approached, the difference becomes even smaller, and the many-particle spectrum becomes
even more uniform.

Because not much depends on energy, there is ana priori chance that this crossover
somehow reflects an insulator–metal transition in a many-particle interacting system. As can
be seen in figure 3, there is no clear finite-size behaviour. This probably means that we are
dealing with a crossover, not a phase transition.

Before we conclude, we want to comment on the importance of the excitons introduced
above. Now we concern ourselves with the localization of excitons in real space. The following
scenario seems likely (although we have not found a way to prove that it actually obtains,
using our numerical data). Excitons are localized as long as the disorder dominates and the
many-body level statistics is Poissonian. There might exist a crossover regime where the
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charge is still localized but the excitons become delocalized. In the case where a metal–
insulator transition exists (in three dimensions, and possibly, for the interacting case, in two
dimensions) the exciton delocalization happens on the insulating side of the critical region
of the metal–insulator transition. This scenario can lead to a situation where the electronic
conductivity is exponentially small while the electronic thermal conductivity changes as a
power of temperature [11].

Another consequence of the possible exciton delocalization is that the excitons can play a
crucial role in low-temperature variable-range hopping. At low temperatures, they can assist
electron hopping much more effectively than phonons. As a result, the prefactor of the variable-
range hopping can take on a universal value ofe2/h, as was observed experimentally. This in
turn leads to a very simple microscopic interpretation of the dynamic scaling at a number of
quantum phase transition points, such as the quantum Hall and the superconductor–insulator
transitions [12,13].

Arguments for the delocalization of two interacting electrons above the Fermi sea in a
situation where both of them (as well as the other electrons of the Fermi sea) are localized
were given in references [14, 15]. In the case of electrons interacting via the Coulomb
interaction, these arguments should not be valid, because the joint density of states of two
electrons drastically decreases at small energy due to the Coulomb gap in the one-electron
density of states. However, for a compact electron–hole pair—an exciton, as we mentioned
above—Coulomb effects increase its density of states, making these arguments more plausible.
In fact, these arguments have been applied to the exciton before [15]; however, the effect of
the Coulomb enhancement of the exciton density of states was not considered.

In conclusion, we found a P–W crossover in the statistics of the nearest-neighbour spacings
of many-particle levels, which occurs almost simultaneously at all energies. To interpret this
crossover we introduced excitons, and speculated that the crossover is related to the increase
in strength of their interaction, which in turn leads to the transition from a description where
each state corresponds to a number of weakly interacting excitons to one in terms of new states
which are delocalized in the space of the old ones. Although the transition is similar to the
delocalization in Fock space occurring in metallic samples recently studied in references [3–8],
it shows a completely different dependence on energy.
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